Appendix B — Summary of Existing Methods for Estimating Biospheric Carbon
Stocks & Fluxes

Carbon Stocks

Biospheric carbon stock assessment has become the standard method for valuing forest
carbon offsets, and is a foundation for the UN’s REDD program (Gibbs et al. 2007).
These provide critical baseline measures for evaluation of offset programs. Repeated
stock assessments provide an indicator of actual carbon loss or gain (integrated fluxes).
Several methods are used, including plot-based field methods, forest inventory
approaches, and remote sensing, and these methods have been reviewed in Gibbs et al.
2007.

Direct stock assessment is challenging due to the many components involved, several of
which are not directly accessible. Terrestrial biospheric carbon stocks incorporate several
live and dead components, both above and below-ground. Biospheric carbon fractions
include living trees, other live vegetation, roots (fine and course), and dead carbon pools,
which include large woody debris, plant litter, and soil organic matter.

Field based inventory methods can be accurate for small regions, but are time-consuming,
hard to verify without independent sampling, and easily subject to human error or fraud.
Biome averages based on inventory methods are commonly used, but these are typically
based on extrapolation from inadequate sampling or inconsistent methods, so vary widely
in their estimates (Gibbs et al. 2007).

Since inventories and other field sampling methods are typically limited to small plots or
local regions, remote sensing has been used to extrapolate stock estimates to larger
regions through calibration and allometric approaches. Use of remote sensing can
increase consistency and cost-efficiency over manual field methods. However, to be
defensible, remote sensing and automated sampling methods must at some point be tied
to field assessments. High spatial resolution imagers and new technologies like LIDAR
and imaging spectrometers may improve the type of information that can be derived
about stocks from remote sensing and may reduce dependence on manual measurements
in the field.

Field Measurements: Inventory methods

Forest inventory methods are derived from forest mensuration programs to estimate tree
growth and traditionally do not estimate all forest carbon fractions. Forest biomass can
be estimated by destructively harvesting trees, drying and weighing the biomass, and
applying a correction factor to express the portion present as carbon (Westlake 1996,
Kitani and Hall1989). Harvest methods are considered to be accurate but impractical
because they require forest destruction and are expensive in terms of the time required to
obtain the measurements over all pools of carbon (Gibbs et al., 2007).



Inventory programs often use look-up tables or correlations with aboveground biomass to
fill in the smaller carbon pools. Allometric models scale relationships between tree
properties and biomass, often using DBH or combined with tree height to estimate carbon
stocks (see review by Gibbs et al., 2007). Inventory data are extrapolated to larger areas
using either empirical or statistical methods. Brown et al. (1993) were early users of GIS
models that incorporated spatially explicit data layers (climate, topography,
environmental information, and inventory data) to produce maps of carbon stocks.

Because forest inventories were originally done to support the forest products industry,
they don’t directly assess carbon. Many of these programs now have formalized protocols
for assessments at the state and national levels. For example, the U.S. Forest Service
Forest Inventory and Assessment (FIA) database consists of ~125,000 plots collected
with consistent methodologies (Woudenberg et al., in press) that include information
about forest type, tree density, size class, habitat descriptions, tree diameter at breast
height (DBH), soil litter layers, etc. and information about areal extent of forest lands.
Current USFS enhanced FIA data include annual estimates of tree crown conditions,
coarse woody debris, tree carbon and biomass. The FIA program uses three levels of data
collection, which systematically sample US forest lands: Phase 1 stratifies land cover
using remote sensing to identify forests, Phase 2 samples one field site for every 6,000
acres and collects data on forest type, site attributes, tree species, tree size, and overall
tree condition and Phase 3 measures forest health attributes, including canopy condition
(over and understory), lichen composition, woody debris, and soil properties. The Forest
Health Monitoring (FHM) program samples about 7,800 plots, which are scaled up to
larger regions using aerial photo interpretation.

Remote sensing Methods

In recent years, remote sensing has been applied to biospheric carbon stock assessment,
providing a level of objectivity and consistency that is difficult to attain with field
sampling alone. Satellite and airborne remote sensing systems have been used to provide
synoptic estimates of forest carbon stocks. Almost all carbon biomass studies to date
have depended on statistical relationships between ground-based measurements and
satellite-observed vegetation indices. Monitoring of carbon stocks at national or regional
scales still needs additional research and multisource data inputs to increase confidence in
the estimates (Gibbs et al., 2007). However, these methods provide a rich array of data
sources that, particularly when checked against field measurements, allow regional and
global monitoring of biosequestration. Some of the key methods are described below.

Optical remote sensing data

Most remote sensing methodologies use red and near-infrared reflectance to scale canopy
biomass. However, because chlorophyll absorbs so strongly in the red part of the
spectrum, measurements often saturate at leaf area indexes of 3-4, making these methods



more reliable where vegetation is sparse (Roberts et al., 2004). Optical systems tend to
underestimate carbon stocks when canopies are dense, especially when using standard
vegetation indexes like the Normalized Difference Vegetation Index (NDVI), which
saturates at LAIs well below most mature forests. Optical systems are also limited to
measurements under “ideal” illumination conditions, usually a cloud-free period from
late morning to early afternoon. Cloud cover is a serious problem in many tropical and
arctic regions, thus limiting the use of remotely sensed data in areas that are of greatest
concern for degradation by human activity and/or climate change. As discussed below,
radar provides a good alternative for use in areas with persistent cloud cover.

The AVHRR satellite, which has a spatial resolution of approximately 1.1 km, has
provided a consistent 30-year record for monitoring global forests. The long term
AVHRR data set has been used to follow long term trends in forest cover at the global
scale (Gutman, 1999). Similarly, we have a 25-year record of Landsat Thematic Mapper
data (starting in 1984) that provides global coverage. Up until recently, Landsat has been
mostly used at the regional scale of forests and site conditions, although the USGS has
used it to produce a National Land Cover Map for the U.S
(http://landcover.usgs.gov/usgslandcover.php). The recent advances in Landat data access
at USGS makes it possible to use Landsat globally, although the data base does not have
a full archive of international images over the entire record. Also, Landsat has limited

spectral bands, reducing its value for biospheric carbon assessment relative to newer
sensors. Launched in 2000, NASA’s MODIS sensors provide global coverage, although
the MODIS products are generally thought to be too coarse for most local-scale stock
assessments or offset projects. Thenkabail et al. (2004) has shown that MODIS does not
accurately estimate carbon stocks in tropical forests because of its large pixel size.

Newer high spatial resolution satellites like the Worldview-2 instrument (Digital Globe’s
satellite sensor, http://www.satimagingcorp.com/satellite-sensors/worldview-1.html),
with eight spectral bands in the visible and near-infrared and sub-meter pixels could
provide higher spatial resolution coverage. The trade-off of such small pixels is that the
extent of the area covered is small, making nadir observations of specific locations
difficult. This presents a challenge in obtaining large area coverage, and if you could
amass the data, the expense would become prohibitively high given current costs. The
German RapidEye constellation of five satellites, launched in 2008, provides frequent
repeat data combined with Sm pixels and 5 spectral bands (3 visible, 1 far red and one
near-infrared band). At this spatial scale the local land cover patterns is apparent and the
added spectral band at the “red edge” (boundary between visible and infrared bands
formed by the long wavelength edge of the chlorophyll absorption feature) provides
additional information on photosynthetic pigments and leaf area density.



Hyperspectral sensors, with many narrow spectral bands, offer additional advantages for
carbon stock assessment over broadband sensors. The advantage of having more infrared
bands than these instruments have is that the data are less correlated with visible bands
and so more information on structure and composition can be retrieved. If the bands are
placed at key absorption features like water absorption, cellulose absorption, mineral and
clay absorptions, etc., they can contribute to quantifying those materials. Thenkabail et
al. (2004) obtained much better carbon estimates using hyperspectral data from the
Hyperion imaging spectrometer, confirming that the spectral limitation is the most critical
since the pixel size is the same as Landsat’s.

Very high-resolution aerial imagery

The advantage of airborne sensors is the potential to make high spatial and high spectral
resolution measurements. Data from airborne instruments can then be used to train
coarser satellite sensors with wider coverage. Imagery as fine as 20 cm pixels is
available from some airborne imagers (e.g., AISA, Specim, Oulu Finland; and Hyperpec,
Headwall, Fitchburg, Massachusetts, USA). At this scale, data can be used to measure the
number of trees, tree crown areas or crown diameters in addition to using the spectral
information to quantify the state of health or vigor of the vegetation. Maps of tree crown
areas from these high spatial resolution sensors can be used to estimate carbon stocks
with high accuracy (e.g., Greenberg et al., 2005). These data are collected over relatively
limited spatial extents (100-1000 km), but could be used for mapping inaccessible areas
or used in a sampling scheme where coarser satellite data are trained from these smaller
sampling systems. Nonetheless, using mosaics of several flight lines it is possible to build
up large area coverage.

A great variety of airborne imagers are and have been flown. Most of these imagers have
either 3 or 4 bands, operating in the visible to near-infrared (VIS-NIR) region or are
imaging spectrometers, which have large numbers of narrow adjacent wavebands
(“hyperspectral”), thus when analyzed produce a spectrum for each pixel. These can
either be of the VIS-NIR type or measure across the reflected infrared spectrum, typically
from 400-2500 nm. These are generally flown so that they acquire very high spatial and
spectral resolution. Most of the imaging spectrometers flown today are available in North
America and Europe (although HyMap is Australian) but are not yet widely available
elsewhere. Dr. Gregory Asner, from the Department of Global Ecology at the Carnegie
Institution, is flying a full spectrum ITRES airborne imaging spectrometer and a full
waveform Optec LiIDAR over tropical forests (Asner et al. 2010) with the goal of species
and functional type mapping all tropical forests globally within five years.



Satellite microwave or radar data

Radar (radio detecting and ranging) sensors emit photon pulses and measure the time for
the pulses to return from the vegetation canopies and the ground. Radar pulses penetrate
clouds and are insensitive to atmospheric water vapor, thus they can be used in any
season and location. While radar bands can be used in land cover classifiers similar to
methods common to optical remote sensing instruments, the physical basis underlying the
measurements is different, so the information is different. Radars are sensitive to the
amount and phase of water (vapor, liquid, solid) and the three-dimensional structure of
the canopy and land surface.

The Synthetic aperture radar (SAR) can be used to quantify forest carbon stocks in
relatively homogeneous or young forests but saturate at low biomass (50-100 tC/ha), so
may not be sufficiently sensitive for high-biomass forests (Paris and Ustin 1990, Le Toan
et al. 2004, Patenoude et al. 2004). SAR sensors are on board several satellites (ERS-2,
PALSAR on ALOS, and ASAR on Envisat). These are used for biomass estimation in
areas where optical remote sensing is difficult and in woodlands and less dense forests.

The difference between signals returned from the ground and the canopy are used to
estimate tree height, which is then converted to estimates of forest carbon stocks using
allometry. Flying multiple SAR instruments with different frequencies (particularly S, L,
and P bands) provides more information about the 3D structure of the vegetation than
shorter wavelengths (e.g., X, C), which tend to saturate and mainly provide information
about the upper surface. Longer wavelength radars (e.g., S, L, P-bands) can penetrate the
canopy to the understory and the ground surface, although this also depends on
vegetation density (Paris and Ustin, 1990). The pulses are polarized and different
instruments may have horizontal or vertical polarizations. The return signals can be
polarized and this can be used to generate “cross-polarization” images (where the radar
sends signals in one polarization and receives in another). These different polarized
images respond differently to the orientation of vertically oriented forests compared to
the more horizontally oriented land surface, thus these data provide more information
about 3D forest structure than a single polarization, thus improving the ability to produce
accurate carbon maps.

Airborne LiDAR (light detection and ranging)

LiDAR is an alternative form of active remote sensing technology that emits laser pulses
in the near-infrared. Because of this LIDAR systems are subject to the same water vapor
saturation as other optical sensors. However, LIDARs produce datasets that are easier to
interpret than radar, are more routinely available from commercial sources. The demand



for LIDAR data has been rapidly growing because of its ability to collect spatially
detailed 3-D monitoring of forest structure. Radar and LiDAR systems can both provide
day and night coverage, expanding the time window available for data collection beyond
sunlit hours.

Like radar, LiDAR instruments measure the return time to estimate the height and
vertical structure of forests (Dubayah and Drake 2000). When the light pulse contacts the
forest canopy and ground surfaces, it is then reflected back to the instrument. As with
other methods described above, LIDAR data can be calibrated against field data to
develop allometric relationships to estimate carbon stocks (Hese et al. 2005). While these
methods work well for trees during their expansive height growth stage, they don’t work
well in tropical forests that rapidly reach their maximum height while continuing to
accumulate carbon for many decades. Large-footprint LiDAR is reported to exceed the
capabilities of radar and optical sensors to estimate carbon stocks for all forest types
(Means et al. 1998, Lefsky et al. 1999, Drake et al. 2003), and is now the “method of
choice” for remote estimates of forest carbon stocks. Unfortunately, most commercial,
airplane-mounted LiDAR instruments remain costly to use for anything more than small
areas, largely due to pricing structures in the airborne geomatics industry. Recent studies
show that it is possible to systematically collect LIDAR data over extensive areas that is
cost-effective from automation and economies of scale (Asner et al. 2010). A satellite-
based LiDAR system could provide global coverage but none are currently funded and
continued development of NASA's DESDynl was terminated in the White House 2012
budget. Consequently, the goal of global LiDAR coverage remains elusive at this time.

Linking measurements of carbon stocks and disturbance

Accurately quantifying disturbance and linking it to changing carbon stocks remain key
challenges in biospheric carbon assessment (Running 2008). Changes in carbon stocks
and related emissions can be monitored from satellite-based observations of deforestation
once the broad spatial distribution of carbon stocks is well established and the
calibrations or allometric relationships are understood and validated. To calculate carbon
emissions using stock methods, it is essential to determine the area disturbed - often in
the form of area logged, burned (wildfire), or lost through other disturbance events (e.g.
drought or insect infestation) - and the amount of carbon contained in those forests before
and after the disturbance. Clear cuts can be readily assessed from remote sensing, but
more diffuse disturbance (e.g. selective logging) requires additional approaches (e.g.
Asner et al. 2005) that are not as straightforward as baseline stock assessments. For this
reason a variety of approaches based on more direct flux assessment can be used, and are
considered below.



Carbon Fluxes

Several methods of assessing fluxes (biospheric gains and losses) are now in wide use by
carbon cycle scientists. Fluxes can be measured and expressed over short (daily or
weekly) time spans, or integrated over long time spans (one year or more) to estimate
changes in stocks. When integrated spatially, particularly in a multi-scale framework
(top-down or bottom-up scaling, discussed below), they can provide insight into spatial
patterns of changing biospheric carbon stocks.

One advantage of flux assessments over traditional stock methods lies in their ability to
detect short-term ecosystem losses or gains in carbon, for example due to disturbance.
Often, these perturbations can be readily tied to underlying processes causing these
changes, including drought, insect infestations, wildfire, or land use land cover change
(LULCC) (Fuentes et al. 2006, Reichstein et al 2007, Kurz et al. 2007 & 2008, Beer et al.
2011) In this way, they provide a “sharper tool” for understanding the dynamics of
biospheric carbon over finer time scales than can be provided by periodic stock
assessments. Many flux methods are based on automated monitoring, ranging from
remote sensing to automated field methods, lending a degree of objectivity hard to attain
with manual sampling. However, most equipment used for flux assessment tends to be
expensive and requires ongoing maintenance and regular calibration, adding to the costs
of these methods.

Flux assessments include “top-down” methods, where atmospheric CO; data are used to
estimate regional fluxes using model inversions (Tans et al. 1990, Fan et al. 1998). Top-
down methods are good for providing constraints on fluxes and can contribute to regional
or global monitoring. However, due to their coarse spatial scales, these methods cannot
typically resolve local or plot-level estimates, so have not been able to contribute to
current carbon markets. This may improve as high-resolution satellites and better
atmospheric measurements become more available (Crisp et al. 2004). The MODIS
satellite sensor provides several global data products that are used to produce coarse-scale
global NPP (Net Primary Production) products (Running et al. 2004), but these coarse-
scale products often do not match local- and regional -scale measurements very well
(Heinsch et al. 2006, Turner et al. 2005), and may miss subtle or fine-scale disturbance.
Better integration with airborne and ground-based methods is needed to improve these
top-down products for local and regional assessments.

Flux assessments also include a large variety of “bottom-up” methods, where local fluxes
(typically measured by eddy covariance) are linked to remote sensing to extrapolate to
larger regional or global scales (Rahman et al. 2001, Fuentes et al. 2006, Reichstein et al.
2007, Xiao et al. 2008, 2010). Recently, with the help of improved cyberinfrastructure



and cloud computing, bottom-up methods are advancing dramatically (Ryu et al. 2010),
offering novel solutions at a range of scales matching policy and carbon market needs.

Direct Flux measurement

Eddy covariance calculates net biospheric-atmospheric carbon fluxes for entire
ecosystems from direct measurements of carbon dioxide concentrations and air
movement (wind speed and direction). Chamber methods can also be used, but these are
typically restricted to very small (<1m?) areas, so are of limited use for carbon markets.
Similar methods involving chambers or eddy covariance for measuring ecosystem
methane fluxes are also becoming available, but have not been as widely applied as the
methods for carbon dioxide, largely due to high costs and technical limitations of early
methane sensors (Smeets et al. 2009).

The eddy covariance method can be used to collect data automatically and continuously
over extended periods, allowing direct measurements of fluxes for entire vegetation
stands, something unattainable by any other method. Typically, this method is reported in
30-minute or daily time intervals, and can be integrated to provide annual sums. While
eddy covariance records the exchange of gases between the atmosphere and the
biosphere, providing a direct measure of carbon dioxide sequestration, this method is
expensive and limited to certain conditions. Instruments must be calibrated and
maintained, and are limited to areas of minor topographic relief where the vegetation
composition and structure is relatively uniform over large areas (Baldocchi 2008). The
methods do not provide reliable data where the fetch is inadequate or during periods of
low wind speed, and often fail during harsh weather, leading to frequent data gaps.
Because eddy covariance methods are restricted in geographic coverage to level,
homogenous landscapes, large parts of the world are not suitable for this method, and
extrapolation from single-site measurements to larger regions is a challenge. Alternate
“inverse dispersion” methods (Wilson et al. 1982, 2010, Flesch et al. 1995 & 2005,
Leuning et al. 2000) are capable of monitoring surface-atmosphere exchanges for more
complex landscapes, but are not yet in wide use. Meanwhile, eddy covariance has
emerged as a standard method for quantifying surface-atmosphere gas fluxes.

Currently, there are hundreds of eddy covariance sites around the world, and many of
these are part of the global FLUXNET network (http://www.fluxnet.ornl.gov/fluxnet/).
Particularly when combined with aircraft, satellite, or field optical data that can help
extrapolate from local points to larger regions or fill in missing data, the flux network
provides a potent system for monitoring biospheric carbon fluxes at multiple scales, and
for understanding the factors controlling these fluxes for different representative
ecosystems (Reichstein et al. 2007, Xiao et al. 2008, 2010). Recent applications of cloud
computing have greatly assisted in the power of extrapolating to regional and global
levels (Ryu et al. 2010). Combining flux measurements with remote sensing is also



critical to validation of remote sensing driven models (Turner et al. 2005, Heinsch et al.
2006). Optical sampling networks (e.g. SpecNet) coupled to flux networks (FLUXNET)
can help fill in gaps due to missing data, and can provide key “calibrations” needed to
enable proper interpretation of optical measurements from aircraft and satellite (Gamon
et al. 2006, 2011).

Optical remote sensing

Most current applications of remote sensing to biospheric carbon focus on the visible and
near-infrared (“optical sensing”) because the technology is mature with good quality data.
A particular benefit of optical sensing is that it can be applied at many scales, from an
individual point to the whole globe (Gamon and Qiu 1999). Sampling reflected solar
radiation at multiple wavelengths (including visible, near-infrared, and short-wave
infrared) reveals information on vegetation structure and physiological state useful for
assessing biospheric carbon stocks and fluxes. Vegetation is spectrally distinctive and
discriminating healthy green vegetation from senescent vegetation, soils, and other
materials is relatively straightforward. Instruments are available that measure spectra
from field-based, airborne or sampled from satellite platforms, with spatial resolutions
ranging from centimetres to kilometres (Gamon and Qiu 1999). These data can readily
verify the presence/absence of vegetation, percent canopy cover, evaluate whether cover
has increased when comparing data from two or more dates, and can be used to measure
a variety of key parameters related to carbon stocks and fluxes.

Structural parameters include estimates of aboveground biomass, % cover, leaf area
index, and the fraction of photosynthetically active radiation (Fapar) absorbed by green
vegetation. Assessing below-ground structure or carbon storage from remote sensing is
more challenging and cannot be done directly by optical means since optical remote
sensing cannot penetrate soil. Instead, remote sensing can be used to extrapolate from
field measurements involving below-ground monitoring to obtain large-area estimates of
carbon. While certain structural metrics can be related to carbon stocks (see above), they
can also be used to estimate fluxes, since they help define the capacity for photosynthetic
carbon uptake. Consequently, vegetation structural measurements, along with other
measurements, are essential to the estimate of carbon stocks and fluxes described in the
next paragraph.

Optical remote sensing can estimate photosynthetic carbon uptake (photosynthetic rates,
net ecosystem exchange, gross primary production, or net primary production). Usually,
some form of a “light-use efficiency” (LUE) model (Monteith 1977) is used, and many
variations of this model have been developed, ranging from “instantaneous” leaf- and
canopy-scale models (Gamon et al. 2001) to annual integrations applied at regional or
global scales (Field et al. 1998, Goetz and Prince 1999, Lobell et al. 2002, Running et al.



2004). In this sense, the LUE model is readily “scaleable” and easily driven by remote
sensing inputs at many spatial scales.

The LUE model combines an estimate of light absorption (APAR or “absorbed PAR”)
with an “efficiency” factor (¢) that describes the proportion of absorbed light converted to
fixed carbon (biospheric carbon). APAR is closely related to structural parameters (fPAR
or LAI) and represents the vegetation’s capacity for light absorption, and therefore its
potential photosynthesis, assuming no physiological restrictions due to stress. The
efficiency (¢) term indicates changes in the efficiency of light usage due to environmental
restrictions or physiological constraints. In the past, efficiency has often been defined as
a constant or biome-specific parameter, and this is often still used as a first
approximation. Recent satellite-driven models either use meteorological data (Running
et al. 2004) or direct remote sensing measurements (Hilker et al. 2009) to estimate
efficiency as a model variable, recognizing that environmental conditions and plant
physiological responses can cause considerable variation in light-use efficiency.

To calculate the net carbon uptake (e.g. net photosynthesis, net primary production), a
respiration term must be added to the LUE model. Alternatively, since ecosystem
respiration can be closely tied to recently fixed carbon (Hogberg et al. 2001), the LUE
model often provides a remarkably good estimate of net ecosystem exchange (NEE) or
net primary production (NPP) even without an explicit respiratory term. In this case,
respiration becomes an implicit part of the “efficiency” term of the LUE model (Gamon
and Qiu 1999), and respiration can be estimated from remote sensing using the same
structural parameters used to drive APAR in the LUE model (Gamon et al. 2006). If
respiration is to be calculated explicitly, a variety of modeling approaches can be used.
Most respiratory models require estimation of temperature and moisture, both of which
can be detected remotely (Gamon and Qiu 1999). Disturbance is one of the main
confounding factors when estimating ecosystem respiration, as it can cause the abrupt
release of otherwise stable biospheric carbon pools (Kurz et al. 2007, 2008).
Consequently, attempts to model fluxes from remote sensing should be cognizant of the
degree and nature of disturbance.

In recent years, optical remote sensing have expanded in scope to provide far more
detailed physiological information that previously thought possible with remote sensing.
Newer methods include estimation of chlorophyll and carotenoid pigments levels
(Gitelson et al., 2002, 2003; Feret et al., 2008, Zarco-Tejada et al., 2001), photosynthetic
light-use efficiency (Gamon et al. 1992, Hilker et al. 2009), and water content (Hunt and
Rock 1989, Hunt 1991, Pefiuelas et al. 1993, Ustin et al. 1998). Together, these new
optical remote sensing methods are providing many ways to assess vegetation “health”
that can be useful in assessing carbon fluxes and can further refine regional estimates of
biospheric carbon uptake.
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Satellite sensors

A rich array of platforms are available for optical remote sensing, ranging from satellite
to airborne and field sensors. Currently, the MODIS satellite sensor uses a light-use
efficiency (LUE) model to produce global estimates of annual biospheric carbon uptake
(Net Primary Production) for most of the world’s surface (Running et al. 2004). In this
case, the efficiency and respiratory terms are driven largely from a global network of
meteorological stations. Other forms of the LUE model driven entirely from satellite data
sources have also been tested, with promising results (Rahman et al. 2004, Sims 2006).
While generally too coarse for local carbon offset projects, these satellite products clearly
demonstrate that technical capability exists to estimate biosequestration rates from
satellite for large regions of the globe. When supplemented by finer-scale observations,
we now have a rich selection of tools for monitoring biospheric carbon fluxes at a range
of spatial scales. For example, airborne imaging spectrometry and field sensors can be
useful for estimating carbon flux using a LUE model.

Airborne sensors

A number of airborne imaging spectrometers can be used to estimate carbon fluxes with
the light-use efficiency model. For example, the AVIRIS sensor has been used to
estimate regional patterns of carbon flux using the light-use efficiency model (Rahman et
al. 2001, Fuentes et al. 2006). Since many airborne imaging spectometers provide sub-
meter spatial resolution (as well as high spectral resolution), they provide a much finer
scale product than most satellite sensors, and provide an “intermediate scale” platform for
linking satellite data to field observations. Because aircraft deployments can be more
flexible than satellite orbital constraints, aircraft sensors are well-suited for experimental
tests. Due to the new generation of inexpensive airborne sensors, airborne platforms
present are now presenting new opportunities for monitoring carbon fluxes at local to
regional scales

Field optical sensors

Recent years have seen the emergence of a wide array of field optical sampling methods
that closely match the scale of the eddy covariance measurements (Gamon et al. 2006,
Leuning et al. 2006, Hilker et al. 2007) while providing much-needed ground validation
for aircraft and satellite sensors (Cheng et al. 2006). When properly calibrated, field
optical sensors can estimate ecosystem carbon uptake by providing the APAR and
efficiency terms of the light-use efficiency model (Gamon et al. 2011). Principal
advantages are 1) their reliability, 2) their relatively low cost compared to other methods
discussed above, 3) their flexibility and expandability, and 3) their ability to be directly
compared to aircraft and satellite data providing similar metrics but from different scales
(Cheng et al. 2006, Hilker et al. 2009).
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Optical methods now exist at many levels of technology and cost, and range from simple,
inexpensive, two-band radiometers to more expensive field spectrometers and imaging
spectrometers. These can be arrayed on a variety of platforms, and can be networked with
radio or satellite links. Recent advances in wireless technology facilitate sampling
schemes that allow improved sampling of representative ground regions, including flux
tower footprints and satellite pixels. In this way, optical sensors provide a convenient
“bridge” linking direct flux measurements (chambers or eddy covariance) to aircraft or
satellite sensors.

Recent studies are showing that simple radiation sensors can be configured into low-cost
automated monitoring stations (“phenology stations,” Huemmrich et al. 1999). These
provide proxy measures of canopy light absorption (APAR) that often scale closely with
whole-ecosystem carbon fluxes (Huemmrich et al. 2010) or biomass gain (Gamon et al.
2011). In this way, simple, low-cost optical sensors can be used to estimate ecosystem
carbon storage, often with remarkable accuracy. Current work is improving this accuracy
by improving estimates of light-use efficiency (€) and ecosystem respiration from remote
sensing. For example, Garrity et al. (2010) recently demonstrated an inexpensive optical
sensor for automated monitoring the Photochemical Reflectance Index (PRI), an indicator
of photosynthetic light-use efficiency (Gamon et al. 1992). Other studies have applied
this index to aircraft (Rahman et al. 2001, Fuentes et al. 2006) or satellite (Rahman et al.
2004, Drolet et al. 2005, Hilker et al. 2009) data, providing a path for improved estimates
of photosynthesis and vegetation carbon uptake from space (Grace et al. 2007).

While inexpensive optical sensors are now in limited use as research tools, expanded
application of these sensors, development of wireless sensor networks, and competition
among several manufacturers is likely to reduce the costs. Recent advances in optical
sensor design and application, including robotic, multi-angle sampling methods, and
wireless sensor networks, offer further opportunities for sampling eddy covariance
footprints (Gamon et al. 2011). By enabling the comparison of whole-ecosystem optical
properties to flux measurements these sensors are improving our ability to monitor
carbon uptake and validate airborne and satellite data (Cheng et al. 2006, Drolet et al.
2008, Hilker et al. 2009). Properly calibrated and integrated networks of field optical
sensors represent a major un-tapped opportunity for biospheric carbon monitoring.
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